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PAPER

Path-Classified Trace Cache for Improving Hit Ratio in

Wide-Issue Processors

Jin-Hyuk YANG†, In-Cheol PARK†, and Chong-Min KYUNG†, Nonmembers

SUMMARY In this paper, an instruction-cache scheme
called Multi-Path Tracing is proposed to enhance the trace cache.
Paths are classified to improve the trace cache hit ratio by reduc-
ing the path conflict and basic blocks are joined to reduce the
hardware cost needed to implement the trace cache. Simulation
results for various SPEC integer benchmarks show that the pro-
posed scheme increases the hit ratio by more than 25% and the
effective fetch size by 10%.
key words: superscalar, instruction fetch, trace cache

1. Introduction

To best utilize the high parallelism provided in the exe-
cution unit of a wide-issue superscalar processor [1], an
instruction fetch mechanism that can supply sufficient
instructions at a time is indispensable. However, con-
ventional cache-based fetch mechanisms [2] are limited
to supplying only one basic block per cycle as branch in-
structions and their targets are generally located at dif-
ferent cache lines. A basic block is a sequential instruc-
tion group that is bounded by branch instructions. Re-
cently, the trace cache (T-cache) fetch mechanism [3]–
[5], shown in Fig. 1, was proposed to overcome this lim-
itation, which can fetch multiple noncontiguous basic
blocks per cycle without increasing the fetch latency.

The T-cache stores dynamic instruction sequences
and path information at run time, and is accessed in
parallel with the instruction cache (I-cache) using the
same fetch address. The I-cache is 2-way-interleaved so
that two consecutive cache lines can be accessed at a
time; this allows one-time fetching of sequential code
that spans a cache line boundary [6], [7]. The multiple
branch predictor [8] generates multiple branch predic-
tions. If the T-cache is hit, meaning that fetch address
matches the tag and branch predictions match the path
information, an instruction sequence from the T-cache
is fed to the decoder. On a T-cache miss, fetching pro-
ceeds normally to the I-cache. At the same time, the
fill logic collects consequent basic blocks as they are
fetched by the processor and merges them into a trace
which will be written into the T-cache later. The merg-
ing process is completed when either a given number
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(n) of instructions have been merged into the trace or
a given number (m) of branches have been detected in
the trace. This T-cache mechanism supports one path
for each starting address, which makes the trace stored
in the T-cache useless if the directions of branches are
changed dynamically at run time.

In this paper, we propose a new T-cache archi-
tecture called Multi-Path Tracing (MPT) to enhance
the T-cache by supporting multiple paths for a start-
ing address. The enhancement is associated with two
hardware schemes, path classification and basic block
joining. The previous T-cache fetch mechanism pro-
posed by Rotenberg et al is referred to as Single Path
Tracing (SPT) because it considers only one path for
a starting address. Briefly speaking, the path classifi-
cation reduces T-cache misses caused by path conflicts
(Path conflict denotes that the branch prediction path
does not agree with the path information of the trace
stored in the T-cache.), and the basic block joining re-
duces the hardware cost necessary to implement the
trace cache.

The rest of this paper is organized as follows. Sec-
tion 2 presents the details of the two hardware schemes
which are the architectural basis of the proposed MPT
scheme. Section 3 describes the way to measure the per-
formance of the MPT scheme. Section 4 presents the
experimental results followed by concluding remarks.

2. The Architecture

Figure 2 shows the MPT mechanism equipped with the

Fig. 1 Typical architecture of trace cache fetch mechanisms.
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Fig. 2 Overall architecture of the proposed MPT fetch mechanism adopting the path-
classified T-caches and basic block joining logic. (PSM in trace cache stands for path
selection multiplexers.)

proposed hardware techniques. The major differences
between the SPT [3] and the MPT are the organiza-
tion of T-cache and the instruction selection logic. In
the MPT, the T-cache is organized to support the path
classification, and the instruction selection logic is de-
signed to support the basic block joining.

Throughout this paper, as was assumed in the SPT
scheme [3], we also assume that the fetch size is limited
to 16 instructions (n = 16) and 3 basic blocks (m = 3).

2.1 Path Classification: Reducing Path Conflicts

In the SPT, T-cache can store only one path from a
certain starting address. However, there are four possi-
ble paths that have the same starting address (See the
control flow graph of Fig. 2.). Since the paths with the
same starting address have to be placed at the same
entry in the T-cache, many conflicts are inevitable. In
general, the path conflicts exert a negative influence on
the T-cache hit ratio. To investigate the effects of path
conflicts on the T-cache hit ratio, we simulate the previ-
ous T-cache fetch mechanism for SPEC integer bench-
marks. Figure 3 represents the percentage of path con-
flict misses with respect to the total misses and shows
that a large portion of T-cache misses is caused by path
conflicts. Furthermore, the portion increases as the size
of T-cache increases; 25% of misses are caused by the
path conflicts for 4KB T-cache, 40% for 16KB, and
52% for 64KB. To reduce the path conflicts, we explic-
itly classify paths from a certain starting address, and
store them in different locations.

As shown in Fig. 2, the MPT scheme contains three
separate traces corresponding to three different paths
of two consecutive branches, i.e., paths 01, 10, and 11.
Since the basic blocks in path 00 can be directly sup-
plied by the I-cache, it is not stored in the T-cache. The
path 01 cache contains basic blocks B and E in the con-
trol flow graph of Fig. 2. To form the path 01 trace, the

Fig. 3 Percentage of path conflict misses with respect to the
total T-cache misses for various SPEC integer benchmark pro-
grams.

first basic block A supplied by the I-cache is joined with
basic block B and E supplied from the path 01 cache by
using basic block joining logic which will be described
in Sect. 2.2. Likewise, the path 10 cache contains basic
blocks C and F, and the path 11 cache contains ba-
sic blocks C and G. All paths are accessed in parallel
with the current starting address, and a correct path is
selected by using the branch prediction bits.

2.2 Basic Block Joining: Optimizing Hardware Costs

In the SPT, the instruction sequence that is supplied
by the T-cache consists of 3 basic blocks from a starting
address. If the T-cache is hit, instructions from I-cache
are entirely discarded without any use. This is a redun-
dancy of the T-cache fetch mechanism because the first
basic block can be directly supplied by the I-cache.

Therefore, in our MPT scheme, only the second
and the third basic blocks are stored in the T-cache,
which are concatenated to the first basic block obtained
from I-cache at run time. Hence, the T-cache needs to
store only the second and third basic blocks, resulting
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Fig. 4 Basic block joining in the MPT scheme, where a number of instructions from
the I-cache as determined by the masking bits (HIT & CTRL) are joined with two basic
blocks from the T-cache.

in the reduction of storage area by one third compared
to the SPT scheme.

Figure 4 shows the basic operation of basic block
joining. Instructions are selected from the I-cache and
T-cache using multiplexers that are controlled by the
HIT and CTRL signals. The HIT signal is activated,
i.e., set to 1, if T-cache is hit. The CTRL signals rep-
resent the actual size of the first basic block and are
provided by the T-cache. The size of the first basic
block is limited to 6, as determined from simulation to
achieve a good performance/cost trade-off. If the num-
ber of instructions in the first basic block is less than
or equal to 6, the T-cache stores only the second and
third basic blocks, and ‘no-op’ instructions are inserted
between the first basic block from I-cache and the sec-
ond basic block from T-cache at run time to make the
selection logic simple. Otherwise, i.e., if the first basic
block contains more than 6 instructions, the 7th and
the following instructions in the first basic block are
stored in the T-cache together with the second and the
third basic blocks. The first basic block is selected by
multiplexers, m0 to m5, which are controlled by the
logical-AND of the HIT signal and the CTRL signals.
The second and third basic blocks are selected by mul-
tiplexers, m6 to m15, which are controlled by the HIT
signal.

2.3 Timing Comparison

The MPT scheme is intended to increase the T-cache
hit ratio. If the MPT scheme increases the cycle time,
the performance benefits obtained by the scheme will
be diminished by the increased cycle time. Hence, it is
important to guarantee that the proposed scheme does
not increase the cycle time.

In terms of timing, there are two differences be-
tween the proposed MPT scheme and the SPT scheme.
The first is that the MPT scheme, compared to the
SPT scheme, has additional delay caused by the path
selection multipelxer. However, since the number of

entries of the I-cache is generally larger than that of
the T-cache, the instruction fetch cycle is determined
by the I-cache. This means the additional delay due
to the path selection multiplexer does not increase the
instruction fetch time. The second is that the behavior
of basic block joining logic is more complex than the
instruction selection logic of the SPT scheme. How-
ever, the delay in basic block joining logic is almost the
same as the delay of the instruction selection logic of
the SPT scheme, because they are composed of only
one multiplxer.

3. Experiment

In this section, we present the experimental method
used to investigate the effectiveness of the proposed
MPT scheme. The simulation methodology and the
parameters for the simulation models are described in
Sect. 3.1, and the performance metrics are described in
Sect. 3.2.

3.1 Simulation Methodology and Models

To evaluate and compare the performance, we con-
structed trace-driven simulation models for the MPT
scheme and Rotenberg’s SPT scheme [3] and simulated
them with the T-cache size of 4KB, 16KB, and 64KB
using instruction traces of 10 SPEC integer bench-
marks; five SPECint92 benchmarks and five SPECint95
benchmarks. The benchmarks were compiled using
GNU C compiler with the compiler options “-O4-
static.” SPARC instruction traces were generated using
the QPT (Quick Profiler and Tracer) [9].

Table 1 summarizes simulation parameters for T-
cache fetch mechanisms used in this experiment, where
MPT stands for Multi-Path Tracing and SPT stands for
Single-Path Tracing, i.e., MPT is the enhanced T-cache
fetch mechanism equipped with the proposed hardware
techniques, while SPT is the Rotenberg’s T-cache fetch
mechanism [3] which can store only one path for a cer-
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Table 1 Simulation parameters for SPT (Single-Path Tracing)
and MPT (Multiple-Path Tracing) scheme. The parameters of
the two TC fetch mechanisms were chosen such that the same
total silicon area is used.

SIMULATION TC FETCH MECHANISM
PARAMETERS SPT MPT

Fetch limit 16 insts. or 3 basic blocks
size 8KB – 128KB

Instruction line size 64 byte
cache associativity direct mapped

miss penalty 10 cycles
Multiple length of BHR 14 bit

branch size of PHT 214 2-bit counters
predictor #predictions ≤ 3

per cycle
line size 16 insts. 10 insts.

Trace 4KB 64 32/path
cache #entries 16KB 256 128/path

64KB 1024 512/path

tain starting address.
Since the T-cache size of MPT needed to store the

three paths is roughly twice of the T-cache size of SPT
for each entry because in the proposed MPT scheme
only two basic blocks are stored instead of three, i.e.,
(2/3) × 3 = 2, only half as many entries as SPT are
used in MPT to fairly compare the two schemes, i.e.,
the performance of two schemes is compared with as-
suming the same total silicon area for the T-cache. For
example, the number of entries of the MPT scheme for
a 4KB T-cache is 32, while that of SPT is 64.

To focus on the performance of the T-cache, we
modeled the I-cache and the multiple branch predictor
to have the same parameters for both schemes. The I-
cache is direct mapped and its line size is 64 bytes. Its
miss penalty is fixed to 10 cycles but its size is changed
from 8KB to 128KB. The multiple branch predictor
used in this experiment is an extended model of the
GAg scheme [10] that has a 14-bit length of Branch His-
tory Register (BHR) and 214 2-bit counters in Pattern
History Table (PHT).

3.2 Performance Metrics

To evaluate and compare the performance of T-cache
fetch mechanisms, T-cache hit ratio and effective fetch
size (EFS) are used as the performance metrics. EFS
indicates the average number of correct instructions per
cycle, denoting that the discarded instructions due to
incorrect branch prediction are not counted in calculat-
ing EFS.

The behavior of the MPT scheme is some differ-
ent from that of the SPT scheme in case that a miss
occurs on the I-cache. On an I-cache miss, the MPT
scheme has to stall during the miss service time, be-
cause the first basic block should be fetched from the
I-cache entry, whereas the SPT scheme has no need to
stall. To fairly compare the performance, the effect of
instruction cache miss is considered in calculating the

performance metrics. For the calculation of T-cache
hit ratio, a T-cache hit means that hits are occurred on
both T-cache and I-cache for the MPT scheme, whereas
a hit on I-cache is not taken into account in the SPT
scheme. The number of stalled cycles due to I-cache
misses are also included in the calculation of EFS.

4. Experimental Results

At first, we simulated the SPT and the MPT schemes
by varying the T-cache size from 4KB to 64KB, keep-
ing the I-cache size constant at 128KB. The first set
of results, as shown in Table 2, represents the T-cache
hit ratio for each simulated benchmark program. The
proposed MPT scheme significantly improves the T-
cache hit ratio. For 4KB T-cache, the MPT scheme im-
proves the hit ratio of T-cache by 28.8% on the average,
varying from 10.1% improvement for com95 (compress
in SPECint95) to 93% improvement for gcc95 (gcc in
SPECint95). The average hit ratio of 16KB and 64KB
T-cache with the MPT scheme are improved by 25.4%
and 25.2%, respectively.

An observation is that the highest improvement
in the T-cache hit ratio is obtained from gcc. Since
the control sequence of gcc is very complex, i.e., gcc
contains a large number of branch instructions and
the direction of the branch instructions are rather ran-
dom, the previous T-cache scheme (SPT) cannot pro-
vide high hit ratio.

Another observation is that the average T-cache
hit ratio of 4KB T-cache of MPT scheme is 61.2% and
that of 16KB T-cache of SPT scheme is 58.6%. This
means that adopting the path classification is more ef-
fective than simply increasing the number of entries of
T-cache in improving the T-cache hit ratio.

The increased T-cache hit ratio results in improv-
ing EFS, as shown in Table 3. For the 4KB T-cache, the
proposed MPT scheme improves EFS by 9.1% on the
average; from 2.7% improvement for com95 to 16.2%
improvement for gcc92 (gcc in SPECint92). The aver-
age EFS of the MPT scheme are improved by 9.6% and
10.2% compared to that of 16KB and 64KB T-cache,
respectively.

As stated before, a disadvantage of the MPT
scheme is that it can not work when a miss occurs
on the I-cache, since the first basic block of a trace
is fetched from the I-cache. Hence, a potential problem
with the proposed MPT scheme is that its performance
can be degraded when it is combined with a small size I-
cache. To investigate the performance effect of I-cache
size, we performed a set of simulations with varying I-
cache size from 8KB to 128KB, keeping the T-cache
size constant at 4KB.

Figure 5 shows the average T-cache hit ratio as
a function of the I-cache size for both SPT and MPT
schemes. The MPT scheme provides almost constant
improvement in T-cache hit ratio irrespective of the
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Table 2 Trace cache hit ratio (%) for Rotenberg’s SPT scheme and the proposed MPT
scheme (Improvement(%) = (B − A)/A × 100).

4KB TC 16KB TC 64KB TC
Benchmarks SPT MPT Improve- SPT MPT Improve- SPT MPT Improve-

(A) (B) ment (%) (A) (B) ment (%) (A) (B) ment (%)

com92 82.5 91.2 10.5 85.6 93.2 8.9 85.6 93.9 9.7
eqn92 73.8 91.0 23.3 77.5 94.2 21.5 78.2 95.6 22.3
esp92 52.9 65.6 24.0 59.5 79.4 33.4 64.5 87.4 35.5
gcc92 26.0 45.7 75.8 42.2 64.9 53.8 55.3 80.3 45.2
sc92 46.1 66.4 44.0 60.6 75.5 24.6 71.2 86.7 21.8
com95 62.3 68.6 10.1 65.4 71.8 9.8 65.5 73.4 12.1
gcc95 20.0 38.6 93.0 33.1 54.6 65.0 50.4 76.7 52.2
ijpeg95 53.1 62.4 17.5 57.2 66.6 16.4 58.6 68.0 16.0
perl95 23.6 40.8 72.9 46.3 67.6 46.0 61.9 84.5 36.5
vor95 34.5 41.5 20.3 58.1 67.1 15.5 71.5 83.1 16.2

average 47.5 61.2 28.8 58.6 73.5 25.4 66.3 83.0 25.2

Table 3 Effective fetch size for Rotenberg’s SPT scheme and the proposed MPT scheme
(Improvement(%) = (B − A)/A × 100).

4KB TC 16KB TC 64KB TC
Benchmarks SPT MPT Improve- SPT MPT Improve- SPT MPT Improve-

(A) (B) ment (%) (A) (B) ment (%) (A) (B) ment (%)

com92 11.0 11.5 4.5 11.2 11.5 2.7 11.2 11.5 2.7
eqn92 9.7 11.2 15.5 9.9 11.4 15.2 10.0 11.5 15.0
esp92 8.5 9.0 5.9 8.8 10.4 18.2 9.1 10.7 17.6
gcc92 6.8 7.9 16.2 7.6 8.8 15.8 8.3 9.5 14.5
sc92 8.5 9.4 10.6 9.4 10.0 6.4 10.0 10.7 7.0
com95 11.1 11.4 2.7 11.3 11.6 2.7 11.3 11.6 2.7
gcc95 6.7 7.4 10.4 7.3 8.1 11.0 8.1 9.1 12.3
ijpeg95 11.1 11.9 7.2 11.3 12.2 8.0 11.4 12.3 7.9

perl95 7.0 7.8 11.4 8.2 9.2 12.2 9.0 9.9 10.0
vor95 7.9 8.7 10.1 9.2 10.0 8.7 9.9 10.9 10.1

average 8.8 9.6 9.1 9.4 10.3 9.6 9.8 10.8 10.2

Fig. 5 Average T-cache hit ratio as a function of the I-cache
size for both SPT and MPT schemes (T-cache size = 4KB).

cache size. The average hit ratio in the MPT scheme
is 60.3% for 8KB, 60.9% for 16KB and 32KB, and
61.2% for 64KB and 128KB, while in the SPT scheme
the average hit ratio is 47.5% for all sizes. Thus, the
performance degraded by decreasing the cache size is
not significant in the MPT scheme. This outcome is
resulted from the fact that a trace is composed of the
instructions fetched from the I-cache, i.e., the presence

of a trace in the T-cache means that the instructions
making the trace exist in the I-cache. If an entry of
the I-cache is replaced by new instructions, the corre-
sponding entry of the T-cache is also be replaced by
new trace that is composed of the new instructions.

5. Conclusions

In this paper, we proposed a trace cache enhancement
scheme called MPT. Paths are classified to improve the
trace cache hit ratio by reducing the path conflict and
basic blocks are joined to reduce the hardware cost
needed to implement the trace cache. The hardware
cost reduced by basic block joining technique is applied
to implementing the trace classification technique to
improve T-cache hit ratio by reducing path conflicts.

We simulated the proposed MPT scheme for vari-
ous SPEC integer benchmark programs and evaluated
the performance. At the same hardware cost as the
SPT scheme, the MPT scheme improves the T-cache
hit ratio by more than 25% and improves the effective
fetch size by about 10%.
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